Что нового

Бесплатные online курсы, скачать сливы курсов - kursy.live

Слив курсов - это быстрый и доступный способ получить дополнительные зания или ознакомиться с курсом, до его покупки.

Оперативная поддержка

Не активна ссылка? Обновляем неактивные ссылки в течении считанных минут.

Постоянное обновление

Ежедневно добавляем по 10-20 свежайших сливов. Не пропусти.

Гибкие тарифы

Можете скачать один курс или получить не ограниченный доступ ко всем курсам.

Математика для Data Science. 2 часть. Теория вероятности и математическая статистика [2020] [Специалист]

admin

Administrator
Команда форума
СУПЕР МОДЕРАТОР
Регистрация
26.05.2022
Сообщения
26 725
Реакции
163
Баллы
63
Математика для Data Science. 2 часть. Теория вероятности и математическая статистика
Специалист

Профессия Data Scientist становится одной из самых перспективных и востребованных в IT. Для успешной работы в этой области необходимы знания разделов высшей математики, таких как теория вероятности и математическая статистика.

Цель курса: освоить основные разделы теории вероятности и математической статистика, необходимые для успешного применения в области Data Science.

Курс рекомендован начинающим специалистам в области Data Science. По окончании курса Вы сможете использовать полученные знания по теории вероятности и математической статистики для старта в данной сфере.

По окончании курса Вы будете уметь:
1. Использовать полученные знания по теории вероятности и математической статистики для старта в Data Science.

Специалисты, обладающие этими знаниями и навыками, в настоящее время крайне востребованы. Большинство выпускников наших курсов делают успешную карьеру и пользуются уважением работодателей.





Содержание
1. Модуль 1. Основные понятия теории вероятности. Примеры
2. Модуль 2. Случайные события. Условная вероятность. Формула Байеса. Независимые испытания
3. Модуль 3. Дискретные случайные величины. Закон распределения вероятностей. Биномиальный закон распределения. Распределение Пуассона
4. Модуль 4. Описательная статистика. Качественные и количественные характеристики популяции. Графическое представление данных
5. Модуль 5. Непрерывные случайные величины. Функция распределения и плотность распределения вероятностей. Равномерное и нормальное распределение. Центральная предельная теорема
6. Модуль 6. Проверка статистических гипотез. P-значения. Доверительные интервалы.
7. Модуль 7. Взаимосвязь величин. Параметрические и непараметрические показатели корреляции. Корреляционный анализ.
8. Модуль 8. Многомерный статистический анализ. Линейная регрессия
9. Модуль 9. Дисперсионный анализ. Логистическая регрессия
10. Модуль 10. Применение изученных разделов теории вероятности и математической статистики на общем примере (Jupiter notebook). Проект.

Продажник
 
Прием платежей для сайтов
Верх